

Cooperative E-H Activation:

New Avenues for Catalysis

Supramolecular & Homogeneous Catalysis Group, van 't Hoff Institute for Molecular Sciences,

HOM KAT

s.y.deboer@uva.nl

University of Amsterdam, Science Park 904, 1098 XH Amsterdam

Introduction

- > Cooperative substrate activation is omnipresent in biological systems
- ➤ Combinations of 1st row TMs and reactive ligands are scarce in synthetic chemistry
- > Activation of NH and CH by TMs is of huge interest
 - > Development of new catalytic routes for functionalization reactions

➤ Goal: Study new cooperative complexes of 1st row TMs for activation reactions and additional bond formation

Synthesis and Complexation

Stabilization of Deprotonated Complex

stabilized with PMe₃.

Activation of Amines

X-rays of activated NH₂Tf for both Cu (left) and Pd (right).

Cu Catalyzed Azide-Alkyne Cycloaddition

in-situ addition of acetylene

IR: 2030 cm⁻¹ IR: 1224 cm⁻¹

Conclusion & Outlook

- ✓ PN-ligand shows cooperative behavior
- ✓ Selective N-H activation of acidic amines
- ✓ C-H activation of phenylacetylene
- ✓ Application of cooperative ligand in CuAAC reaction
- ✓ Stabilization of deprotonated complex by neutral co-ligand
- ✓ Cooperativity of Fe & Ni complexes under investigation
- > Explore further reactivity of PN ligand
- > Focus on hydroaddition reactions

